

DPP No. 43

Total Marks : 23

Max. Time : 24 min.

Topics : Current Electricity, Elasticity & Viscosity, Geometrical Optics, Gravitation, Sound Wave, Rigid Body Dynamics

ratio $\frac{a_1}{a_2}$ in answer sheet (Assume there is no external force other then the gravitational force of earth before

and after the firing of rocket from the satellite)

5. A bird is singing on a tree and a man is hearing at a distance 'r' from the bird. Calculate the displacement of the man towards the bird so that the loudness heard by man increases by 20 dB. [Assume that the motion of man is along the line joining the bird and the man]

COMPREHENSION

A uniform rod AB of length ' ℓ ' is thrown upwards such that initially AB is horizontal, velocity of centre is 'u' upwards and angular velocity ' ω ' is such that velocity of 'B' at this moment is zero. The values of ' ω ' and 'u' are also such that the rod becomes vertical first time at the moment when the centre of rod reaches the highest point of its motion.

u²

- **6.** The value of ' ω ' in terms of 'u' and ' ℓ ' is equal to
 - (A) $\frac{u}{\ell}$ (B) $\frac{2u}{\ell}$ (C) $\frac{u}{2\ell}$ (D) $\frac{u}{4\ell}$
- 7. The value of 'u' is equal to

(A)
$$\sqrt{\frac{\pi \ell g}{4}}$$
 (B) $\sqrt{g\ell}$ (C) $\sqrt{\frac{\pi \ell g}{2}}$ (D)

8. The angular acceleration of the rod during the motion is

(A)
$$\frac{g}{\ell}$$
 (B) $\frac{2g}{\ell}$ (C) 0 (D)

Get More Learning Materials Here :

🕀 www.studentbro.in

Answers Key

1.	(B)	2.	(C) 3.	(A) (C)	4.	1
5.	<u>9r</u> 10	6.	(B) 7.	(A) 8.	(C)	

Hints & Solutions

1. Originally $V_A = V_D = V_E$

After connecting C & B. The equivalent circuit will be [Now V_A = V_D =V_E and V_C = V_B]

 \therefore Ratio = 3.

2. The only force acting on the body is the viscous force

Here,
$$m \frac{v dv}{dx} = -6\pi \eta r v$$

= $-rv$
 $\Rightarrow \int_{v}^{0} m dv = \int_{0}^{x} -r dx \Rightarrow x = \frac{mv}{r}.$

3. The image of a point closer to the focus will be farther. As the transverse magnification of B will be more than A, the image of AB will be inclined to the optical axis.

4.
$$a_1 = \frac{F}{m} = \frac{GM}{r^2}$$

It is same in both cases

$$\therefore \quad \frac{a_1}{a_2} = 1$$

Get More Learning Materials Here :

Loudness
$$\beta = 10 \log_{10} \frac{I}{I_0}$$

 $\therefore \beta_2 - \beta_1 = 10 \log_{10} \frac{I_2}{I_1}$ &
 $\therefore I = \frac{P}{4\pi r^2}$
 $\therefore \frac{I_2}{I_1} = \frac{r_1^2}{r_2^2}$
 $\therefore (\beta + 20) - \beta = 10 \log_{10} \frac{r^2}{r_2^2}$
 $= 20 \log_{10} \frac{r}{r_2}$
 $\Rightarrow \frac{r}{r_2} = 10 \Rightarrow r_2 = 0.1r$
 $\therefore \text{ shift} = r - 0.1 r = 0.9 r.$
Ans. $\frac{9r}{10}$

Sol. 6 to 8

5.

The angular speed of rod = $\omega = \frac{u - v_B}{\ell/2}$

As given $v_B = 0$ $\therefore \omega = \frac{2u}{\ell}$ Ans.

The time after which centre of rod reaches the

highest point is $t_0 = \frac{u}{g}$

The angular acceleration of rod is zero and in the given time to the rod undergoes angular displacement

 $\frac{\pi}{2}$. ∴ from θ = ωt ⇒ $\frac{\pi}{2} = \frac{2u}{\ell} \times \frac{u}{g}$ or $u = \sqrt{\frac{\pi gL}{4}}$

Get More Learning Materials Here : 📕

